
1

ECE 18-649
Final Project Report

December 9, 2015
Group # 12

Shepard Emerson
Daniel Gorziglia
Daniel Haddox

Tom Eliot

All

2

Outline
• Project Statistics
• Controller Design, Door Control

■ Scenarios
■ Sequence Diagrams
■ Requirements
■ Statechart
■ Code
■ Testing
■ System Perspective

• Lessons Learned
• Open Issues

Daniel Gorziglia

3

Project Statistics

Daniel Gorziglia

Mid Semester Final Project

Scenarios and SDs 18 21

Lines of
Requirements

37 48

Statecharts 21 States, 26 Arcs 28 states, 45 Arcs

Lines of non-
comment code

1870 3589

Test files 33 43 + 40 + more

Git Commits 612 980

Peer Reviews 60 (47 defects found) 103 (60 defects
found)

Defects found via test 20 found, all fixed 35 found, all fixed

4

DoorControl: Scenarios and Sequence Diagrams
Most Relevant Scenarios:
• 4A: Passenger in elevator as it arrives, then exits

• Required for doors to open at destination

• 5A/B: Passenger enters/exits elevator
• Passenger gets in way of door
• Required for the doors to reverse

• 7C: Elevator doors close on hallway
• Dwell count expires and doors close
• Hall/CarButtonControl and LanternControl lights turn

off

Shepard Emerson

5

Sequence Diagram 5B

Shepard Emerson

Passenger DoorMotor DoorContro
l

DoorReversal DoorClosed DoorOpened

1a. Dwell Time Counter Expires

1b. DoorMotor[b,r] = Close

3a. DoorMotor[b,r] = Open

3c. DoorMotor[b,r] = Stop

4a. Dwell Time Counter Expires
4b. DoorMotor[b,r] = Nudge

5a. mDoorClosed[b,r] = True

5b. DoorMotor[b,r] = Stop

3b. mDoorOpened[b,r] = True

2b. mDoorReversal[b,r] = True
2a. Passenger exits elevator

6

DoorControl Design - Requirements
State Variables
● DwellTime - long integer with number of msec desired for door dwell

during current cycle.
● CountDown - a countdown timer for door dwell time
● DoorHasReversed - Boolean value indicating that DoorControl has

attempted to close the door but a door reversal has occurred, initialized
to False

Constraints
5.1 DoorClosed[b,*] shall be True when there is no mAtFloor[f, b] that is
True.
5.2 Any DoorReversal[b,*] shall not be True for more than an accumulated
time of 50 msec without causing all DoorControllers[b,*] to perform an Open
or Nudge command.
5.3 Doors should keep moving in desired direction unless commanded
otherwise, subject to the constraints of the door object.
5.4 All doors should be commanded to identical positions at all times.
5.5 If CarWeight(x) >= MaxCarCapacity, the doors shall open completely until
the car is no longer overloaded.

Daniel Haddox

7

DoorControl Design - Requirements (1)
Time-Triggered Requirements
5.6 If any mAtFloor[f, b] is True and mCarCall[f,b] is True and
mDriveSpeed is stop and mDesiredFloor(b) is equal to b or both,
then

5.6.1 DoorMotor[b, r] shall be commanded to Open.
5.6.2 CountDown shall be set to Dwell.

5.7 If mDoorOpened[b, r] is True, then
5.7.1 DoorMotor[b,r] shall be commanded to Stop.
5.7.2 CountDown shall be decremented.

5.8 If mDoorClosed[b, r] is True, then DoorMotor[b,r] shall be
commanded to Stop and DoorHasReversed shall be set to False.

5.9 If CountDown <= 0 and DoorHasReversed is False, DoorMotor[b,
r] shall be commanded to Close.

Daniel Haddox

8

DoorControl Design - Requirements (2)
Time-Triggered Requirements
5.9 If CountDown <= 0 and DoorHasReversed is False, DoorMotor[b,
r] shall be commanded to Close.

5.10 If CountDown <= 0 and DoorHasReversed is True, DoorMotor[b,
r] shall be commanded to Nudge.

5.11 If mDoorReversal[b, r] is True, DoorHasReversed shall be set to
True and DoorMotor[b,r] shall be commanded to Open.

5.12 If mCarWeight(g) >= MaxCarCapacity, and mDoorOpened[b, r]
is False, DoorMotor[b, r] shall be commanded to Open.

5.13 Dwell shall be set to an appropriate value based on
mDesiredDwell.

5.14 mDoorMotor[b,r] shall be set to the current value of DoorMotor
[b,r]

Daniel Haddox

9

DoorControl Design - Statechart

Daniel Gorziglia

Init

State 1: Doors Closed
DoorMotor = Stop
CountDown = 0

DoorHasReversed = False

State 2: Open Doors
DoorMotor = Open
CountDown = Dwell

DoorHasReversed = False

State 4: Close Doors
DoorMotor = Closed

CountDown = 0
DoorHasReversed = False

State 3: Doors Opened
DoorMotor = Stop
CountDown -= 1

DoorHasReversed = itself

State 5: Door Reversal
DoorMotor = Open
CountDown = Dwell

DoorHasReversed = True

State 6: Nudge Doors
DoorMotor = Nudge

CountDown = 0
DoorHasReversed = False

For all: mDoorMotor[b,*] = DoorMotor[b,*] Dwell = mDesiredDwell[b]

T1

T2

T3

T7T5

T6 T8

T4

DoorControl Design - Statechart Transitions

10

Transition Condition

5.T.1 mDoorClosed[b,r] == True

5.T.2 (mAtFloor[f,b] == True AND mDesiredFloor.f == f AND
(mDersiredFloor.b == b OR mDesiredFloor.b ==
BOTH) AND (mDriveSpeed == (0,stop))

5.T.3 mDoorOpened[b,r] == True

5.T.4 CountDown <= 0 AND DoorHasReversed == False
AND mCarWeight[g] < MaxCarCapacity

5.T.5 mDoorReversal[b,r] == True OR mCarWeight[g] >=
MaxCarCapacity

5.T.6 mDoorOpened[b,r] == True

5.T.7 CountDown <= 0 AND DoorHasReversed == True
AND mCarWeight[g] < MaxCarCapacity

5.T.8 mDoorClosed[b,r] == True

Daniel Gorziglia

DoorControl Implementation
• Controller Instantiation
• Mailbox and message translator setup
• timerExpired() state machine

• Set outputs
• Transition logic

11
Tom Eliot

DoorControl Testing
• 2 Unit Tests, 18 passed assertions each

• Duplicated unit test to test transition ORs

• 10 Integration tests
• 3B, 4A, 5A, 5B, 7A, 7B, 7C, 8A, 9A, 10A

• Acceptance tests
• Doors initially opened twice on each floor
• Synchronization issues / time wasted
• Required changes to multiple other controllers

• Timing in clearing calls and commanding doors

12
Tom Eliot

DoorControl Testing
• Runtime Requirement Monitors

• R-T7: Open doors only if pending calls
• R-T10: Only nudge doors if reversal occurred.
• Extremely useful for testing entire system

13
Shepard Emerson

Door Control - System Perspective

• Dispatcher has control over doors (mDF.h)
• Doors opening inhibits dispatcher changes

• Doors opening (!closed) turns off calls
• Doors opening turns on lanterns
• Doors closed allows drive to move

• Must tune dwell time for uppeak acceptance
• Multiple reversals considered but not used

14
Tom Eliot

15

Lessons Learned
• Can be challenging to collaborate on design

and architecture.
■ Everyone has their own approach

• Automating acceptance testing helped us
discover bugs.
■ Writing a good script can make debugging much

easier.
• Take breaks when working

Tom Eliot

16

Open Issues
• Heavy architecture changes to dispatcher

have not been propagated through the
documentation

• Still finding small edge cases

Shepard Emerson

Thank you
Questions?

17
All

